Tobacco Fertilization

Andy Bailey
Plant nutrition
16 “Essential Elements”

• Non-mineral: Carbon, Hydrogen, Oxygen
• Macronutrients: Nitrogen, Potassium, Phosphorous
 – Needed in large amounts
 – Deficiency common
• Secondary: Calcium, Magnesium, Sulfur
 – Needed in lesser amounts
 – “natural” supply usually sufficient
• Micronutrients: Copper, Zinc, Iron, Boron, Molybdenum, Manganese, Chlorine
 – Needed in very small amounts
 – Too much can be toxic
General Tobacco Growth Curve

- **Dry wt (lbs./A)**
 - 0
 - 1000
 - 2000
 - 3000
 - 4000
 - 5000

- **Weeks after transplant**
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14

- **Reduction nutrient uptake, Maturation**
- **Rapid top growth**
- **Nutrient uptake**
- **Slow top growth**
- **Rapid root growth**

- **Not topped**
- **topped**
A Typical Dark Tobacco Crop (3000 lbs/A) Removes:

- 210 lbs of N
 - Mid Season to Topping
- 18 lbs of P$_2$O$_5$
 - Early
- 180 lbs of K$_2$O
 - Mid Season to Harvest
Nitrogen Recommendations for Tobacco
Univ. of KY - Revised for 2006-2007 (AGR-1)
Dark and Burley

<table>
<thead>
<tr>
<th>Soil N Level</th>
<th>Well-Drained</th>
<th>Moderately well-drained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low N (following tobacco or row crops)</td>
<td>225-250</td>
<td>250-275</td>
</tr>
<tr>
<td>Medium N (first year tobacco following grass or grass-legume)</td>
<td>200-225</td>
<td>225-250</td>
</tr>
<tr>
<td>High N (first year tobacco following legume)</td>
<td>150-175</td>
<td>175-200</td>
</tr>
</tbody>
</table>

Tennessee recommendations: 150 to 250 lbs N/A
Nitrogen

• Tobacco highly responsive
 – Deficiency
 • Pale green/yellow
 • Stunted growth

• Nitrate-N form is taken up by plants
 – Ammonium-N fertilizer sources have to be converted to nitrate in soil
 • Lowers soil pH
 • Some N may be lost
Effect of N rate and method of application on burley tobacco yield.

If 1/3 or more of N is sidedressed, Total N used can be reduced by 15 to 25 lbs/A
Excessive rates of N

- Nitrate loading in top of plant
 - Green tobacco at harvest and after curing
 - Fleshy yellow spots that won’t cure
 - Fat stems that persist after 8 weeks curing
 - Potentially high levels of nitrosamines

- Lower soil pH
 - Mn toxicity

- Result in loss of contract???
Possible Effects of Excessive Nitrogen

- Increased amounts of green tobacco following curing
 - Delayed maturity from excessive N in plant at season’s end
- Swelled or “fat” stems
 - Nitrate loading of leaf midrib causing decreased moisture loss
- Possible negative effects on cured leaf chemistry
Dark Tobacco Nitrogen Rate Trials
10 trials over 4 locations and 4 years
Varieties: NL Madole, DF 911, KY 171, KT D4LC

Total N Rate (lbs N/A)

Total Yield (lbs/A)
Soil Nitrate Nitrogen Levels Immediately Following Tobacco Harvest
N Rate Trial – Springfield, TN - 2006

\[\text{LSD}_{0.05} = 12.5 \quad 31.1 \]

- **NO\textsubscript{3}-N (mg/L)**
- **NO\textsubscript{3}-N (mg/kg)**

<table>
<thead>
<tr>
<th>Total N applied</th>
<th>Res Soil N (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>5.3, 13.2</td>
</tr>
<tr>
<td>300</td>
<td>18.2, 45.4</td>
</tr>
<tr>
<td>500</td>
<td>36.8, 92</td>
</tr>
<tr>
<td>1000</td>
<td>72.5, 181.1</td>
</tr>
</tbody>
</table>
Soil pH and Mn Toxicity

- Caused by low soil pH
 - not enough lime
 - too much N fertilizer
- Stunts growth
- May reduce yield 200 to 300 lbs./A
- Soil test and add lime as needed
- Recommended soil pH = 6.4 to 6.6
Ammonium Nitrate Issues

• Most common N source for tobacco growers
• Homeland security concerns
 – Can be used to make explosives
 – Easy availability
• Some manufacturing plants have closed
 – Tighter supplies
 • Some imported ammonium nitrate will be brought in
 – Higher costs
New N Source

- Dolomite – Ammonium Nitrate (27-0-0)
 - Ammonium nitrate mixed with dolomitic lime
 - 80% ammonium nitrate
 - Theoretically similar to ammonium nitrate
 - Can impregnate some chemicals?
 - Relatively high cost
 - Availability?
 - Bagged only?
 - Limited practical experience
Ammonium N Sources

- Urea (46% N)
 - Intermediate cost
 - Handling similar to ammon nitrate
 - Can impregnate some chemicals
 - Same lime requirement as AN
 - Converted to nitrate in the soil
 - Subject to loss if surface applied
 - Apply to dry soil
 - Incorporate or water in
 - Delayed uptake (Don’t use for sidedress)
 - Feasible alternative if managed properly
Liquid N Sources

- Liquid Solutions (28 – 32% N)
 - Intermediate cost
 - Mixture of urea, ammonium nitrate, and water
 - Relatively easy to transport, store, and apply
 - Most nurse tanks
 - Many types of sprayers
 - Corrosive to equipment
 - Should be incorporated
 - Feasible for tobacco production
Nitrate N Sources

- Calcium Nitrate (15.5% N)
- Sodium-Potassium Nitrate (15% N)
- Potassium Nitrate
 - Immediate uptake (good for sidedress)
 - Good for low pH soils
 - Erratic availability
 - High cost
 - Low analysis
 - high transport cost
Conversion to Nitrate in Soil

<table>
<thead>
<tr>
<th>N Source</th>
<th>% of Fertilizer as NO_3^{-}N</th>
<th>Weeks After Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Anhydrous Ammonia</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Urea</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>UAN Solution</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Nitrate Sources</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Phosphorous and Potassium Fertilization

• Use soil test to determine need
 – 70% of tobacco patches do not need additional P
 – 30% of tobacco patches do not need additional K

• Lower price and more available in Fall

• Scout fields for signs of deficiency
 – adjust rates to fit specific soil conditions

• Do not use muriate of potash in spring
 – Chloride is detrimental to leaf quality

• Use animal manure in moderation
 – Chicken litter – no more than 2 tons/A
High chloride in tobacco

• Poor cured leaf color
 – dingy, muddy, variegated
• Imparts unpleasant flavor and aroma to smoke
• Reduces burn rate
• Cause cured leaf to hold moisture
 – moldy stems / fat stems
 – high case can lead to rot during storage
 – nitrosamines ??
• Limit on spring Muriate of Potash:
 – No more than 50 lbs Cl/A
 – Muriate of Potash = ~50% Cl (100 lbs/A 0-0-60)
Phosphorus Deficiency
Potassium Deficiency
Calcium Deficiency

- Usually noticed around topping time
 - Can be confused with phenoxy herbicide drift
- Temporary
 - Usually alleviated by change in moisture
- Worse in some burley varieties
 - KT 200
- Yield losses thought to be minor
Possible Boron Deficiency

Soil pH = 7.5
Plant Boron = 24 ppm

Soil pH = 7.3
Plant Boron = 14 ppm

Foliar Boron may Alleviate
0.25 lbs/A Boron = 1.5 Solubor DF/A foliar