Tobacco Transplant Production in Greenhouses

Andy Bailey
Dark Tobacco Extension Specialist

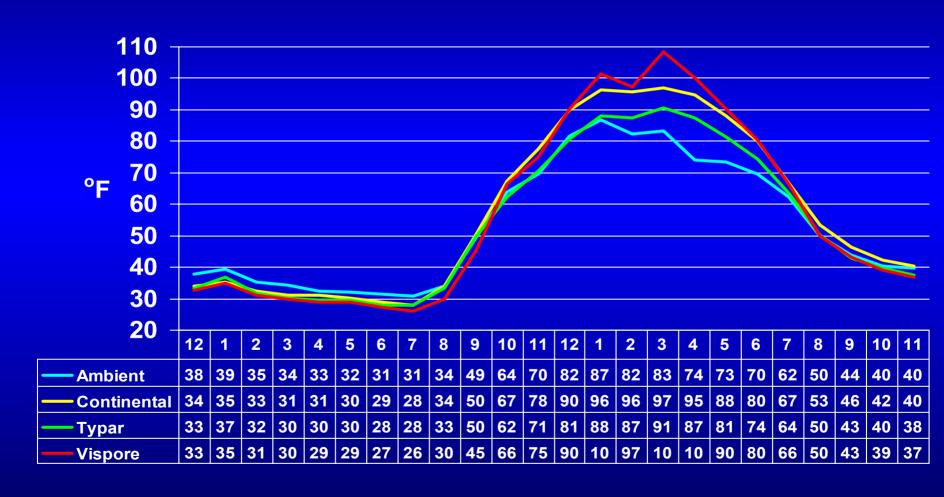
Bob Pearce and Gary Palmer
Tobacco Extension Specialists
University of Kentucky

Outside Bed Construction

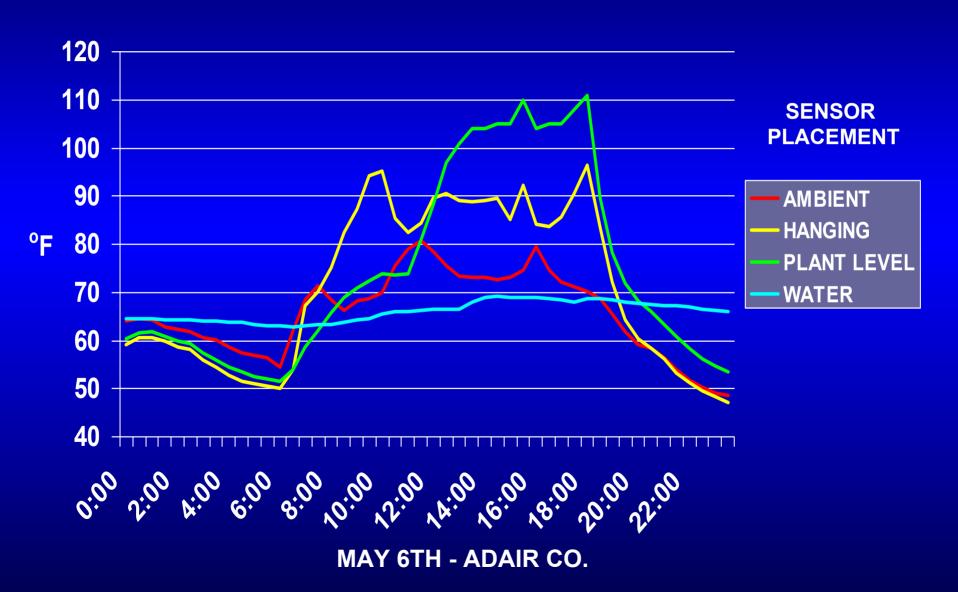
- Plastic Bed Liner
 - 6 mil best
 - Drape over bed and form fit
 - Fill bed with water
 - To desired depth
 - 5" common
 - Tack Plastic down
- Bows
 - Form to support cover
 - 2 to 4 ft apart
 - Prevent swags
 - Water Accumulation
 - Prevent damage to covers

Outside Bed Construction

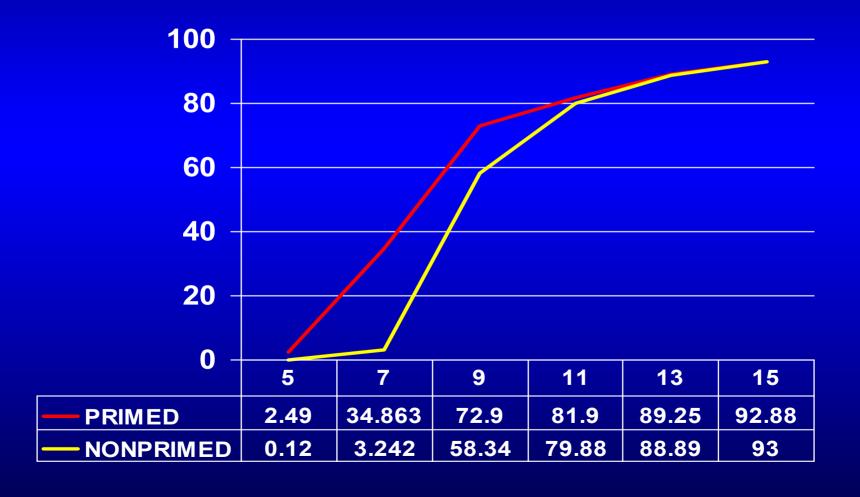
- Covers
 - Sturdy
 - Freeze protection
 - Rain protection


Outside Bed Construction

- Level area
 - Water will find level
 - Avoid swimming pool syndrome
 - Deep end & shallow end
- Free of debris
 - Sand or lime for good surface
- Used 2 x 8's to form box
 - Inside dimensions
 - Consider trays 14" X 27"
 - Determine number wide and long
 - Approximately 30-35 trays per acre
 - Depends on cell number/tray


- Continental
 - Expanded Polyethylene
 - More heat retention
 - More rainfall protection
- Typar
 - Expanded Polypropylene
 - Cooler
- Vispore
 - Plastic with tiny pores
 - Heat buildup
 - Doesn't retain heat energy at night
- Plastic
 - Rainfall protection
 - Heat buildup

Types of Covers for Outside Beds


INFLUENCE OF FLOAT BED COVERS ON DAILY FLUCTUATIONS IN TEMPERATURE

MINI-GREENHOUSE TEMPERATURE STUDY

PERFORMANCE OF PRIMED SEED IN AN OUTSIDE FLOAT SYSTEM - CASEY COUNTY

Thermostat

- Locate near plant level
- Don'ts
 - Locate on end walls
 - Near cracks
 - Doors
 - Fans
 - Shutters
 - Locate in direct sun
 - Distorts ventilation control
 - Fans operate while heating is still occurring

Greenhouses

- Germination
 - Optimum Temperature
 - Soil
 - 70° to 75°F
 - •Air
 - Above soil
 - High end 90°F
 - Damage or kill germinating seeds

Germination

- Variety
 - TN 86 slow
 - 7-14 days
- Chambers
 - 3 ½ days
 - High humidity
 - 90% +
 - Optimum temperature (70° 75°)

Faster transplant growth

- Daytime temperatures
 - 70° to 80°F
 - Lower temp/Slower growth
 - Nighttime temperatures
 - 60° to 70°F range initially
 - 50° to 65°F
 - After four-leaf stage
 - Conserves heating costs

Heaters

- Vented
 - Location
 - Inside the greenhouse usually
 - Some outside
 - Advantages
 - Cleaner, safer environment
 - Dry heat
 - Limitations
 - large and heavy to mount to bows.

Radiant heaters

- Normally unvented
- Directs heat to soil and plant surfaces
- Less heating of the air
- Cleaner combustion
 - Reduces fuel usage
- Temperature control
 - More difficult
 - Sensor must measure soil/plant surface

- Goes through plastic
 - Extra heat loss can occur
- Moisture
 - Still produced
- Fresh air needed
- Cost of units
 - Usually higher than comparable airheating units

Unvented

- Advantage
 - Heat kept inside
 - Simpler to install
- Location
 - Inside or outside
- Limitations of Unvented
 - High risk for plant damage from fumes
 - Needs oxygen (fresh air) inlet to burn fuel
 - Requires air outlet
 - Allow combustion products to escape
 - Produces extra moisture
 - Humidity
 - Condensation

Combustion byproducts

- Ethylene
 - Causes necrotic spots, leaf curl & yellowing
 - Can harm tender young seedlings
- Sulfur dioxide
 - Damages leaf tips
- Nitric oxide
- Carbon monoxide
 - Very dangerous to humans

Thermostat

- Do's
 - Shade top and sides
 - Allow free air circulation
 - Aspirated chamber or enclosure
 - Small fan moves air by the thermostats
 - Located near plant level
 - Mount to swing out of way of clipping system

Ventilation

Objectives

- Maintain the inside air and soil temperature below 85° to 90°F.
- Remove excess moisture
- Provide fresh air for heater fuel combustion

Side curtains

- Passive
- Allow natural air exchange
- Dependent on Wind
- Thermal currents
- Advantages
 - Cost less
 - Can be automated
 - Reduce labor
 - Precise control.

Limitations

- Manual operation requires human presence
- No uniformity of temperature
- Cold drafts
- Heaters may operate when open
- Air leakage
- Non-tight fit
- Added heat costs
- Require straight sidewall

"Flushing" the air each evening and morning

- Helps ventilate excess moisture
 - Opening side curtains
 - Operating the ventilation fans for several minutes

Combination: Fans and Curtains

- Automates first stage
- Advantages
 - Reduces human presence
 - Drafts
 - Potential cold injury
- Limitations
 - Curtains have to be checked, opened or closed as required
 - Tradeoff between costs and better temperature control

- One-half air leakage per hour
 - Dispel 22 pounds of moisture
 - Assuming
 movement of 70°F,
 90 percent relative
 humidity air out
 - 40°F, 50 percent air in, heated up to 70°F
 - Equivalent to 400 to 500 cubic feet per minute (cfm) of steady fan capacity

Ventilation needs: In 30 x 100-foot greenhouse

Operate Fans in stages

- 1st stage
 - 20 percent of requirement
- 2nd stage
 - 40 percent of requirement
- 3rd stage
 - 40 percent of requirement

Ventilation requirements

- Air change per minute (CFM)
- Equivalent of removing and replacing all the air in the greenhouse once each minute
 - Spring & Fall
 - 3/4 to 1
 - Ex. ¾ in 30 X 100 with 4 ft side wall
 - Summer
 - 1 to 1.25

Curtain Styles

Manual Curtains:

- Role up
- Role down
 - Reduces cold injury
 - Cold air mixes with inside air before dropping down onto the plant

Automated Curtains

- Operating by thermostatic control
- Reduce need for human presence
- Must be reliable
- Not overreact
- Open too wide
 - Producing harmful drafts

- Wind
 - Velocity
 - Direction
 - Orientation
- Outside air temperature
- Air blockage
 - Vegetation
 - Buildings
 - Two or more greenhouses side by side
- Width of the house
- Rule of thumb
 - 1 foot sidewall opening per 10 feet of house width
 - 30- to 36-foot houses
 - 3- to 4-foot opening

Size determination for curtains

Shutter Installations

- Gravity-type
- Opens before Fans
 - 8 to 10 sec delay
 - Or thermostat set 2-3 degrees cooler
- Close when fan stops
 - Prevents cold air from entering
- Location
 - Opposite end of the greenhouse

Shutter Size

- Equal to the size of the fan
 - Or 1.25 to 1.5 times larger
- Located 3 feet above the plant level
 - Minimizes drafts
 - Baffles deflect air upward
 - Provide mixing
 - Reduces cold injury

Air Circulation

- Forced air
 - Uniform environment
 - Improved plant growth
 - Horizontal air flow system
 - Simple & Common System
 - 16- to 24-inch fans
 - Suspended in the greenhouse

Locating a Circulation Fan

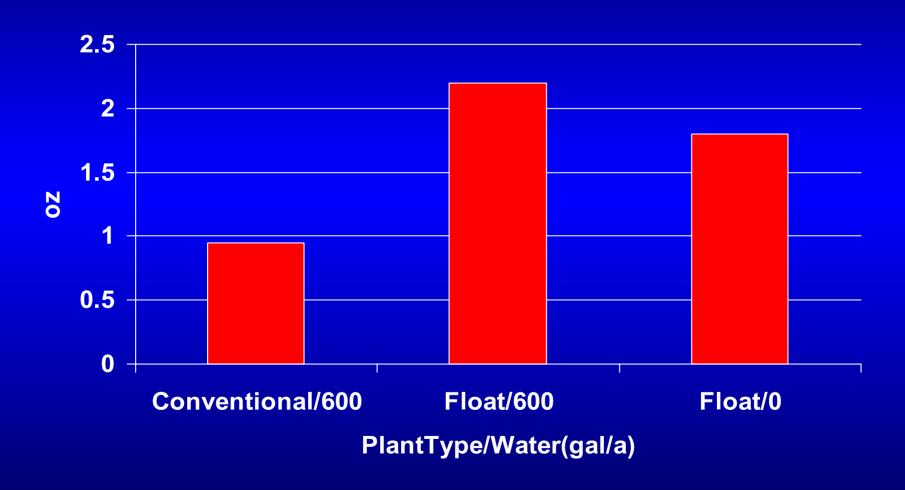
- Spacing
 - 40 to 50 feet apart
 - One-fourth of the house width from each sidewall
- Height
 - Halfway between plant level and the roof
- Angle
 - 10 to 15 degrees inward and downward

Moisture and Humidity

- Problem in most greenhouses
- Sources
 - Evaporation
 - Water surface
 - Soil surface
 - Transpiration
 - Combustion
- Condensation on plastic or structural surfaces
 - Surface cools to dew point
 - Drip
 - Erodes seedlings from tray cells
 - Causes disease problems
 - Corrodes structures and equipment

Double-layer plastic

- Insulates better
- Warmer inside surface temperature
- Less condensation potential
- Condenses the excess moisture
- Provides Stability in high winds
 - Inflation Fan


Problem Situations Moisture and Humidity

- Run Small fan continuously
- Larger fan on interval timer
- Open side curtain
 - Downwind side
 - 1 to 2 inches
 - Causes heat loss
 - Cost of reducing high humidity and condensation

Float Systems

- Advantages over conventional plant beds
 - Producer has control of growth
 - Timing
 - Set all day
 - More set per day
 - More time for other farming activities
 - No transplant shock
 - More uniformity
- Disadvantages
 - Allows producers to set more than can manage
 - Tend to set shallow

Root Development of Float Plants

Float Systems

- Plug & transfer
 - Trays seeded and plugs produced by 2nd party
 - Bought by producer at 4 week old

Plug & transfer

- Transferred to Finishing Tray
- Advantages
 - Difficult part is over
 - Plants are more uniform
- Disadvantages
 - Cost
 - Labor

Plug & Transfer

- Fill Trays with Media
 - Do not over fill
- Transfer to Finishing Tray
 - 1000+ /hr
- Place on Bed
 - Avoid Excessively Cold, Windy Weather
 - Must have 2 to 3 days to acclimate

Direct Seeding

- Seed Pelletized Seed into Finishing Tray
- Place in outside Float System or Greenhouse

Dibble

- Depression for seed
- Micro climate
- Depth 1/4 to 3/4
- Type
 - Round
 - Pyramid
 - Mechanical

Mechanical seeding

- Automated seeding
 - Pelleted seed
 - Singulation
 - Placement
 - Fast/high capacity
 - Drum

Hand Seeder

- Vacuum
 - Most common
 - Quicker
 - Holes may plug
 - Noisy
- Portable
 - Material
 - Plexi-glass
 - Slower
 - Double seed
 - Static electricity

Media

- Characteristics
 - Solid particles of medium
 - Pore space
 - Small Pore Space
 - Capillaries
 - Water coating surfaces of particles
 - Large Pore Space
 - Air occupying the center pores
 - Drainage
 - Cornell mix
 - 50% peat moss
 - 50% vermiculite

Components of media

- Peat moss
 - Water & nutrient retention and rooting
 - Maintains root ball
 - Initially hydrophobic
 - Wetting agents
- Vermiculite
 - Water & nutrient retention and rooting
 - Heat expanded mica
 - Glassy material in flat layers

Components of media (cont'd)

- Perlite
 - White, crumbles easily
 - Aeration
 - From glass-like volcanic rock
- Polystyrene beads
 - Aeration
 - Drainage
- Rock wool
 - Water retention and aeration
 - Spun molten rock
- Coir Coconut hull fiber
 - Water & nutrient retention and rooting
 - Does not maintain root ball

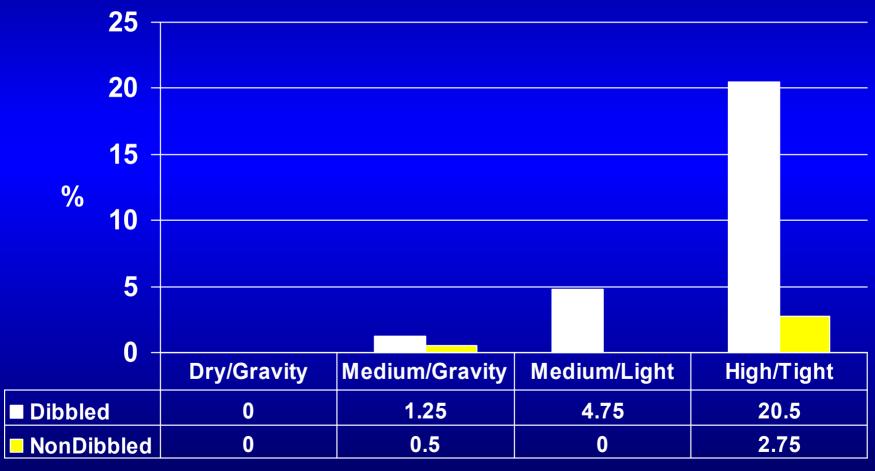
Trays

- Sizes & attributes
 - 200 = 27cc v shaped bevel
 - 242 = 23.6cc straight side wall beveled at bottom
 - 253 = 16cc shallow v shaped bevel
 - 288 = 17cc straight side wall beveled at bottom
 - 338 = 13.6cc v shaped bevel
 - 595 plug tray 1 inch deep
 - 882 plug tray ¾ inch deep | Not suited for float system

Tray filling

- Methods
 - Hand –
 sift soil on top allow gravity to fill, clean with straightedge

Hopper box - prevent weight of media from pressing on tray.


Over Packing

- Saturation of media
- Heavy tray
 - 200 cell tray = 8.3 lbs
- Tray sinks lower into water

Over Packing

- Algae
 - Nitrogen
 - Sunlight
- Slow plant growth

Over Packing - Spiral Root

Moisture/Pack

Spiral root

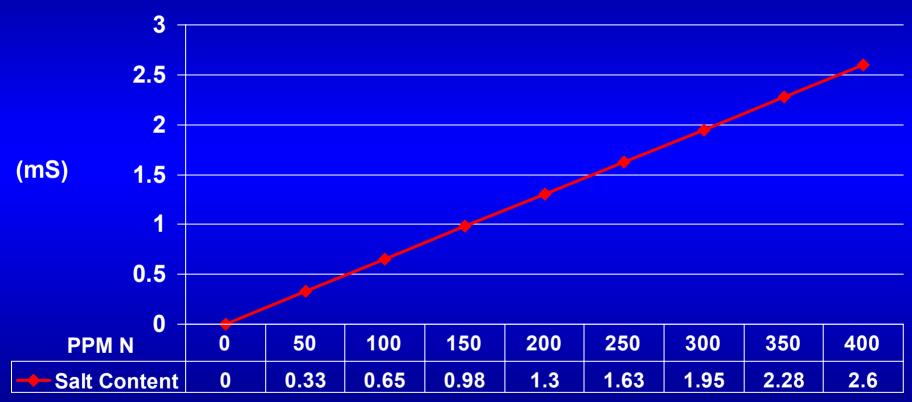
- Causes
 - Hard Seed Coat
 - DryingConditions
 - Sunny, hot weather
 - Poor Wicking Media

Fertility

- Water volume
 - Tray # X depth in inches X 1.64
 - Example: 759 * 4.5 * 1.64 = 5600gal
- Fertilization
 - Nitrogen
 - Amount
 - 100 ppm ideal
 - Calculations
 - 20-10-20 to get 100 ppm N
 - Water = 8.34 lb/gal
 - 8.34 X 1000 gal = 8340 lbs
 - 100 ppm = 1/10000 or .834 lb/ 1000 gal
 - 20-10-20 is 20% N. .834/20% or .834/.2 = 4.17 or 4.2
 - If 15-5-15 .834/.15 = 5.56 lbs.

- Nitrate
 - Best
 - Readily available form
- Ammoniacal
 - Marginal
 - Ammonium form
- Urea
 - Worst
 - Can convert to ammonia or nitrite which can be toxic to plants

Source of Nitrogen


Estimating fertility

- Conductivity Measure of electrical flow
 - Units
 - mS milli-Siemens
 - 100 micro-Siemens or mmhos
 - Method
 - Take water source reading (ex. 0.4)
 - Measure fertilized water (ex. 1.3)
 - Know fertilizer conductivity (ex 20-10-20 is .33/50 ppm) or check chart
 - -1.3 0.4 = .9, .9/.33 = 2.73
 - 2.73 * 50 = 136 ppm

CONDUCTIVITY READINGS

STANDARDS CHART FOR 20-10-20 1 mS (DiST 4 meters)

PPM N

- 1. TAKE WATER SOURCE READING (PLAIN WATER)
- 2. TAKE FERTILIZED WATER READING
- 3. SUBTRACT WATER SOURCE FROM FERTILIZED

EXAMPLE: IF PLAIN WATER = .4 & FERTILIZED WATER = 1.4,

1.4-.4=1.0. PPM N = 150

Clipping

- Clipping
 - 3 5 times
 - 1st level bed
 - Remove small amount
- Benefits
 - Uniformity
 - Stem diameter
 - Toughness

Clipping

- Types
 - Rotary mower
 - Sharp blade
 - Slow speed
 - Electric
 - One speed (fast)
 - Rheostat

Reel mower

- Cuts whole pieces
 Cuts in one direction
- less maneuverable

Tray sterilization

- Contaminated trays
 - New trays versus old
- Bleach 10%
- Steam
 - must reach 140° F for 30 min
 - 180° F damages Trays
- Methyl Bromide
 - Cheap
 - Quick
 - Dangerous
 - Environmental concerns